Here, I used a different method to represent hourly data across various dates. I converted specific dates to common dates and then plotted the time series data on a 24-hour time frame along the x-axis, with traffic patterns on the y-axis. import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime import matplotlib.dates import matplotlib.dates as md path = 'datasheet.csv' data = pd.read_csv(path) data.head() # Convert data to DataFrame df = pd.DataFrame({'Date&Time': data['Date'] , 'DL': data['DL']/1000000000, 'UL': data['UL']/1000000000}) # Replace all Date&Time with '02/02/2024' df['Date&Time'] = '02/02/2024 ' + df['Date&Time'].str.split(' ', expand=True)[1] # Convert 'Date&Time' column to datetime format df['Formated_Date'] = pd.to_datetime(df['Date&Time'], format='%m/%d/%Y %H:%M...